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Nonlinear coupling between eigenmodes of a system leads to spectral energy redistribution. For multi-
wavespeed chaotic billiards, the average coupling strength can exhibit sharp discontinuities as a function of
frequency related to wave-vector coincidences between constituent waves of different wavespeeds. The phe-
nomenon is investigated numerically for an ensemble of two-dimensional square two-wavespeed billiards with
rough boundaries and quadratic nonlinearity representative of elastodynamic waves. Results of direct numeri-
cal simulations are compared with theoretical predictions.
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Recent years have been marked by increased attention to
multiple scattering and propagation of classical waves in dis-
ordered nonlinear media. The main research has been in op-
tics; see �1� and references therein. Characteristics of a wave-
field pertinent to continuous-wave problems, such as angular
correlations and coherent backscattering, have dominated
�2�. The influence of nonlinearity on the stability of a speckle
pattern has been considered also �3�; nonlinear phenomena in
transient fields, as, for example, frequency shifting of a
lasing-mode in a random laser �4�, have been studied.

An anisotropic or multiwavespeed nature of the medium
supporting propagation of the classical waves allows a
broader ground for interplay between nonlinearity and mul-
tiple scattering. Statistical effects of nonlinear wave-field be-
havior have received little attention so far. A class of systems
in which these effects are expected is given by elastody-
namic waves in solids, with anisotropy or multiple speeds of
propagation as a rule rather than exception. Ballistic billiards
in the form of elastic solids with a ray-chaotic shape are
conveniently realizable and allow ready access to the time
domain and observation of transients �5�. These billiards are
representative of classical wave-bearing systems, and are
suited for the study of statistical nonlinear effects that stem
from the multiple-wavespeed character of the wave-field.
The purpose of this study is to provide evidence of one such
effect, namely wave-vector resonance in a chaotic nonlinear
billiard, with an elastodynamic billiard chosen as an under-
lying physical model. In Ref. �6� it was predicted that the
strength of nonlinear coupling among waves of different
types undergoes a discontinuity at certain characteristic fre-
quency ratios.

Dynamics of an elastodynamic billiard after excitation by
a transient source can be reduced in the absence of energy
dissipation to a set of nonlinearly coupled oscillators with
natural frequencies �k, amplitudes of vibration dk, and cou-
pling matrices N �6�,

d̈k + �k
2dk + Nklmdldm + Nklmndldmdn = 0, �1�

where nonlinearity up to cubic terms has been accounted for.
Associated with each oscillator �mode� is its linear energy

Ek= �ḋk
2+�k

2dk
2� /2. Although not being true energy in the

presence of nonlinearity, Ek elucidates trends of modal en-

ergy redistribution when nonlinearity is weak.
For observation times much smaller than the inverse

modal spacing, t�D, individual modes are not resolved, and
statistical description is in order. One of the energy quantities
conveniently accessible for experimental measurement under
these conditions is the average spectral density, E��k , t�
=D��k��Ek�t��, a constant in the absence of dissipation or
nonlinearity. Under the influence of nonlinearity it evolves in
time. The evolution leads to energy deposit into frequencies
that contained no energy initially, thereby allowing detection
of the nonlinearity. In the case of a weak nonlinearity, the
leading contribution to the deposit is given by convolution of
energy densities at two frequencies that have a given �target�
frequency � as a combination, i.e., their sum or difference
�6�,

Ė��,t� = D����
0

+�

d���
±

N��,��, 	� ± ��	�

� E�	� ± ��	�E����/�� ± ���2��2. �2�

Redistribution of the energy involving triads of frequencies,
as in Eq. �2�, is characteristic of a dominant quadratic non-
linearity. Contribution of the cubic terms of Eq. �1� was
found in �6� to vanish on the average, being of the next order
of smallness. The form of Eq. �2� is in agreement with be-
havior expected from elementary theory of nonlinear oscilla-
tions �cf., for example, �7��. It corresponds to internal �fre-
quency� resonance between the modes of the billiard, which
effectively takes place when individual modes are not re-
solved, and hence a combination frequency of two source
modes is indistinguishable from the frequency of another
mode of the system. The resonance manifests itself in an
early-time linear energy growth that can be linked to secular
terms arising in regular perturbation theory �6�.

Redistribution of the spectral energy in the billiard occurs
due to nonlinear coupling of the modes. The average cou-
pling strength is provided by the function �6�

N��k,�l,�m� = ��/2��NklmNklm�

= ��/2�N̂��	N̂
��K�
��k�K����l�K	���m� .

�3�

Greek indices denote spatial degrees of freedom including
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both spatial position x and Cartesian indices, and repeated
nonunderlined indices imply summation. The function N is
symmetrical with respect to its arguments, rendering interac-
tion strength of any triad of frequencies independent of en-
ergy transfer direction between them. Nevertheless, in typi-
cal classical-wave billiards with inverse modal spacing given
by Weyl’s series, D
Vd�d−1+¯ �8�, where Vd stands for
d-dimensional volume of the billiard, the overall power input
exhibits a net trend of the energy transfer toward regions of
greater modal density, i.e., up the frequency spectrum.

Specifics of the physics of a particular system reside in
statistics of its modes uk and operator N̂ that acts on them,
Nklm= N̂��	uk���ul���um�	�. Under the assumption that the
modes are mutually uncorrelated Gaussian random vectors
�9,10�, the statistics are fully provided by the pairwise spatial
modal correlator K����k�= �uk���uk����. In the short-
wavelength limit, when boundary effects are unimportant,
the correlator can be approximated by means of the Green’s
function in unbounded medium, with long-range correlation
being limited to billiard diameter L. Refined approximations
of the correlator that include finite size and geometry effects
can be constructed upon need, see �11� and references
therein.

Under a random wave model �RWM�, a mode inside a
chaotic billiard can be viewed as superposition of constituent
plane waves coming from all directions and having random
amplitudes and phases �9�. In a multiwavespeed billiard,
these waves can have different speeds of propagation and
different amplitudes, requiring a modification to RWM �12�.
Each pair of the constituent waves from the source modes
interacts nonlinearly producing a constituent wave of the tar-
get mode. Two conservation laws must be obeyed in the
process. The first requires frequency of the resultant wave to
be equal either to the sum or difference of the source ones. A
parallel can be drawn to energy conservation applied to par-
ticle scattering problems. The law is automatically satisfied
by the internal-resonance structure of Eq. �2�. The second
law requires wave vectors of the constituent waves to sum,
thus standing for conservation of wave pseudomomentum. In
nondispersive systems interaction of constituent waves of the
same wavespeed is always allowed by the above conserva-
tion laws, when the waves are collinear. This mechanism
provides a nonzero background coupling strength for any
frequency combination of source modes. Interaction of con-
stituent waves of different wavespeeds, however, is only pos-
sible if the frequencies �and polarizations� of the source
waves are in special relation to each other �13�. If the fre-
quencies are such, this additional interaction channel is open,
and nonlinear coupling strength is expected to be greater.
Integral contribution of all constituent-wave interactions is
provided by Eq. �3�, statistics of the waves being incorpo-
rated by means of spatial correlator K. Precise conditions
under which the maximum of the coupling strength is
achieved depend on the specifics of the nonlinearity; for typi-
cal elastic solids they were seen to imply interaction of the
constituent plane waves in a nearly collinear fashion �6�. By
analogy to internal �frequency� resonance, a sharp increase in
the coupling strength due to nonlinear interaction of constitu-
ent waves with different wave speeds is termed wave-vector
resonance here.

To verify existence of the wave-vector resonance, a series
of direct numerical simulations �DNS� was performed. An
ensemble of discrete 2D square billiards with average bound-
ary roughness of 1  24 of the billiard size was taken; cf.
�14�. Evolution of the wave-field inside the billiards was
governed by first-order finite-difference version of the fol-
lowing two-wavespeed elastodynamic equation:

üi = ct
2ui,j j + �cl

2 − ct
2�uj,ij + ��ijklmn�uk,lum,n�,j , �4�

where cl and ct are longitudinal and transverse wavespeeds,
respectively. The nonlinear coupling term was chosen to be
quadratic in derivatives of the displacements u, a form rep-
resentative of the physical nonlinearity in isotropic elastic
solids described by the five-constant theory �15�. The deriva-
tives were coupled by the elementary isotropic tensor,

�ijklmn =
1

8
��ik� jm�ln + �ik� jn�lm + �il� jm�kn + �il� jn�km

+ �im� jk�ln + �im� jl�kn + �in� jk�lm + �in� jl�km� .

Strength of the nonlinearity was controlled by parameter �,
which was kept small on the order 10−2, while u=O�1�. Di-
richlet boundary conditions were imposed on the billiard
boundaries. Initial displacement field was arranged so that
only modes supporting two narrowband Gaussian peaks of
the spectral energy centered at given frequencies �1 and �2
were excited. The width of the peaks was taken wide enough
to encompass tens of modes. Evolution of the initial field up
to one-tenth of the Heisenberg time, tH=2�D= �A /2��cl

−2

+ct
−2�ct /h, where A is average billiard area, and h is finite-

difference step length, was then computed by directly solv-
ing the governing ODEs �4�. The procedure was performed
for a number of realizations in order to obtain ensemble av-
erage of the spectral energy. Expected linear growth in time
of the energy peaks centered at combinatoric frequencies,
�1±2= 	�1±�2	, was observed. By varying central frequen-
cies of the source peaks, and calculating average energy
growth rate of the combinatoric peaks, the coupling strength
�3� was recovered �6�,

N��1±2,�1,�2� = �1/2�Ė1±2�1
2�2

2/D��1±2�E1E2, �5�

where E1,2 and E1±2 are total energies carried by the source
and combinatoric peaks, respectively. Theoretical estimate of
N was also obtained by means of Eq. �3� for the purpose of
comparison with the DNS. A nonlinear operator containing
specifics of the nonlinearity model was taken in accordance
with the one used in Eq. �4�,

N̂�=�x,i��=�x�,k�	=�x�,m� = ��ijklmn��x − x����x

− x���3/�xj � xl� � xn�.

Short-range behavior of the spatial modal correlator was ap-
proximated by its behavior in the unbounded medium,

K�=�x,i��=�x+r,j�
� = A−1�cl

−2 + ct
−2�−1���ij/2��cl

−2J0�klr�

+ ct
−2J0�ktr�� + ��ij/2 − r̂ir̂ j��cl

−2J2�klr�

− ct
−2J2�ktr��� . �6�
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The area of the billiard A enters the above expression due to
normalization of the modes to unity.

The short-range correlator �6�, as it is, leads to divergence
of the spatial integrals at large separations in Eq. �3� due to
slow asymptotic decay of Bessel functions. The divergence is
a consequence of the quadratic form of the nonlinearity and
problem dimensionality. It is not found in 3D, where the
integrals converge �6�. To account for integration over the
finite domain size and keep the integrals finite, long-range
spatial correlation of the modes was restricted by billiard
diameter L :K=K�exp�−r /L� �16�. The restriction is qualita-
tive and does not take into consideration specifics of the
average domain shape. They could systematically be ac-
counted for �11�, but such undertaking lies beyond the scope
of the present work. The normalized coupling strength was
found to scale asymptotically as L with linear system size.
This scaling is different from the case of 3D, where the
strength remains O�L0� �6�.

Comparison of the DNS results with theoretical estimates
is given in Fig. 1. Energy growth rate at the sum frequency
was utilized to obtain numerical values of the coupling
strength; calculations at the difference frequency were car-
ried out as well to check predicted symmetry of N. To factor
out dependence of the coupling strength on global param-
eters, and isolate behavior associated with frequency interre-
lation of the coupled modes, its normalized version was

deemed best suited for analysis: Ñ��1 /�1+2 ,k1+2L�
=�−2�−2A2�1+ �cl /ct�−2�3�k1k2k1+2�−4/3N, with k=� /ct. Plot-
ted in this form, the coupling strength reveals the expected

increase at the resonance frequency ratios in the vicinity of
�1 /�1+2= �1±ct /cl� /2. The ratios correspond to collinear in-
teraction of two constituent transverse waves producing a
longitudinal one. They define a lower and upper bound of the
source to target frequency ratio of the coupled modes for
which the wave vectors of the constituent waves can sum,
i.e., their interaction is possible in accordance with pseudo-
momentum conservation law. Another constituent-wave in-
teraction possible in physical solids, with cl /ct�1, involves
a longitudinal and a transverse wave producing a longitudi-
nal wave. Collinear wave-vector summation for this interac-
tion type occurs at �1 /�1+2= �1± �3−cl /ct� / �1+cl /ct�� /2.
However, this resonance does not manifest itself for the
given nonlinearity model. Under normal conditions its con-
tribution to the coupling strength function is expected to be
noticeably smaller than the one involving two transverse
source waves due to equipartition of the energy carried by
two different types of constituent waves inside a solid. Since
most of the energy, in particular, a fraction �cl /ct�2�1, is
carried by transverse waves, their participation in the cou-
pling is expected to be higher than that of longitudinal ones.

Although good qualitative agreement between theoretical
estimates and DNS was found for parameters used, several
remarks on their discrepancies ought to be made. A differ-
ence between background off-resonance coupling strength
levels, especially at low frequency ratios, is noted. The dif-
ference can be attributed to the fact that though theoretical
predictions based on Eq. �3� are fit-parameter free, some am-
biguity in defining effective volume �2D area� of the billiard
interior, where nonlinear mode coupling takes place, exists.
In the present theoretical estimates it was taken exactly equal
to the average domain area. No account of boundary and
confinement effects was made by correlator form �6� with
imposed qualitative long-range correlation dependence on
the order of domain size. With nontrivial dependence of the
coupling strength on the system size, however, specifics of
the average domain shape may become important for quan-
titative agreement. Also, for system sizes within current DNS
reach, the wavelength of the lowest source mode becomes
large with respect to boundary roughness, and comparable to
domain size at low-frequency ratios. Regular structure of the
mode acquired in this case leads to deviation from the as-
sumed modal statistics, and is expected to provide increased
coherence of mode coupling in the interior of the billiard.
Large-scale symmetry of the square billiard, however, seems
to be of less significance in this case, as DNS calculations of
the coupling strength for ensemble of rough-boundary 3:2
aspect-ratio quarter-stadium billiards produced compatible
results.

As mentioned above, normalized coupling strength is pre-
dicted to asymptotically grow as L with system size. The
prediction, however, is not supported by the current DNS
data, see Fig. 2. The origins and implications of the disagree-
ment are not fully understood at the time. However, it is
speculated that it can be the result of frequency smoothing
imposed on the coupling function by the finite width of the
source energy distribution. The smoothing leads to the fact
that only N, averaged over characteristic peak width, could
be recovered with the help of Eq. �5�. Both decrease and
broadening of the mode coupling resonance peak will follow

FIG. 1. Normalized coupling strength for �a� cl /ct=2, �1+2

=1.2ct /h and �b� cl /ct=3, �1+2=1.0ct /h. Solid and dash lines rep-
resent theoretical estimates, symbols � and � provide DNS data
for nominal system sizes of 128 and 256 grid points, averaged over
25 and 10 realizations, respectively. Error bars correspond to one
standard deviation.
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from this smoothing. System sizes currently available for
DNS realizations do not allow direct observation of the ex-
pected L scaling, or a conclusive statement regarding its

absence. Decrease of the source energy distribution width
would be problematic, in that it needs to contain many
modes in order for the statistical approach to be valid.

In summary, the existence of the wave-vector resonance
in the mode coupling strength, responsible for nonlinear re-
distribution of the average spectral energy, was verified by
direct numerical simulation in a two-wavespeed chaotic bil-
liard with nonlinearity representative of isotropic elastic sol-
ids. Qualitative agreement with theoretical estimates in the
absence of fit parameters was observed. The location of the
coupling strength peak was found to correspond to collinear
interaction of constituent waves of different wavespeeds. The
location was determined from arguments based on conserva-
tion principles, and to leading order depends solely on linear
system quantities.
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